


INTRODUCTION

In a previous paper by Walton, Nachman and Schapery (1), hereafter

referred to as WNS , simple closed form solutions were obtained for the

2—dimensional problem of a rigid indentor sliding over a power law

viscoelastic halfspace. In this paper similar techniques are used to

obtain an analytical solution to the problem of the propagation by a

rigid wedge of a 2—dimensional crack in an infinite power law material.

This particular problem is an example of a physically realizable

mode of fracture to which the correspondence principle does not apply.

Moreover, the closed form solutions obtained here provide a method for

experimentally determining physical parameters, such as the stress

intensity factor , important for an understanding of fracture phenomena.

This problem has been studied extensively for elastic material, a

detailed description of which appears in the article by Rarenblatt [21.

The wedging problem was considered by Barenblatt for two reasons. In

general, Barenblatt addressed himself to the issues of unrealistic

singular crack tip stresses and indeterminant crack lengths encountered

in fracture in classical linear elasticity. The wedge problem exhibits

both features even though the crack is “semi—infinite” since the free

crack surface ahead of the wedge is finite. In particular , the thrust

of Barenbla tt ’s article is that in a neighborhood of the crack tip ,

the separated surfaces experience cohesive molecular forces which

produce a cusp profile and a finite stress field . Barenblatt at-counts
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for this by the phenomenological exped ient of assuming that for

equilibrium cracks a cohesive normal traction acts over a small

interval behind the crack tip with a constant stress intensity factor

characteristic of the material. As noted by Barenblatt, the finite

crack length is determined by merely knowing this stress intensity

factor and is independent of the actual distribution of cohesive forces.

The utility of this observation lies In reversing the implication.

Namely, if experimentally a wedge is driven into an elastic material

and the length of the free surface of the resultant equilibrium crack

is measured , then the stress intensity factor may be easily calculated.

Here we provided simple closed form expressions for the stress

and displacement fields for the wedging of a power law viscoelastic

material under the Barenblatt hypothesis. This analysis culminates

in a relation among the material parameters, the material stress

intensity factor and the length of the free crack surface.

Mathematically , the wedging problem reduces to a set of dual

integral equations which in a sense are inverse to those considered in

WN S. These equations are first solved without the Barenblatt hypothesis

* to simply see what the stress and displacement fields are for a power

law viscoelastic material.

It was observed that the nature of the crack tip profile is

dependent on the material whereas the nature of the stress singularity

is not. In particular, the classical square root singularity in the
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normal stress occurs for all materials, whereas crack tip profiles

range from near square root (as in the elastic case) to cusp—like.

Hence, singular stresses can occur even in the presence of a smoothly

closed crack. With the addition of the Barenblatt hypothesis, the

unknown crack length Is then determined .

_ _ _ _  ~~~~~~~~~~~~~~~~~ 
_
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SECTION 1. FORMULATION OF THE PROBLEM.

We now consider the problem of the steady translation to the left

(with velocity U) of a rigid 2—dimensional symmetric wedge with finite

asymptotic thickness in an infinite power law viscoelastic body. (See

Fig. 1.) Due to symmetry , we may consider the problem for the upper

half plane only. The notation adopted here is consistent with that

employed In WNS [1].

Neglecting inertia, the force balance equations are

ay

+ = 0ay ax

and the boundary conditions are

t (x, 0, t) = 0 —~~~ < x <xy

( 0 x < U t
v(x , 0, t) ~~~~

(f(x—Ut) x > £
2 + Ut

~iy
(x~ 0, t) — 0 Ut < x < £

2 + Ut.

Here v(x , y, t) and u(x, y, t) are the vertical and horizontal

displacements, a and a are the normal stresses on x constantx y

__ _ _ _  _ _ _ _  4
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and C is an arbitrary constant of integration. Equation (5) is the

equation considered in WNS [1] with a replaced by 1 — a. Its

solution may be obtained either by the methods employed there or by

that of Saniko [3]. We adopt the former approach. However, the details

of the derivation of the solution will be omitted since the essential

ideas are contained in WNS [1].

We remark that for technical reasons a straight substitution into

the formulas derived in WNS [1] cannot be used to solve the example

considered in the next section since it results in divergent integrals.

It proves more convenient to solve the corresponding Riemann—Hilbert

boundary value problem in the class of functions unbounded at both

s = 0 and s = i2~ thereby introducing an extra arbitrary parameter,

K, which is later specified by imposing continuity conditions. The

details will be omitted and only the final results presented.

It may be shown by the method employed in WNS [1] that v’(s)

must satisfy the ord inary Abel equation

v ’(t)dt 11
1
(s) 0 < s < £

2 
(6)

0

with

H1
(s) = KS 

l/2
(f S)h/ a B(a , l— a)

— s~~
”2(i _~)

/ r(l—a) 
f~

’2 i (L 2— -r) 
F(r)dr.2 iT (i—a )

The integral in (7) is a Cauchy principal value.

_________L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _
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The function v(s) is easily determined from (6) to be

i. ~s H1(t)dtv(s) = 
B(a, 1—a) J 0 (S~~)l—a (8)

where B(., ) denotes the beta function. The parameters K, C and

are then chosen so as to insure the continuity of v(s) at

= 0, £2 and v’(s) at £2.

In the next section, an example is considered for which a simple

closed form solution is obtained for v(s). We close this section with

a useful observation. Once v(s) is determined , g(s) for $ < 0

is easily calculated from (4). In particular, we have

g(s) 
F(a) F J v ’(y) 

dy. (9)
iT 5

It may be shown from (7) that K and C can be chosen so that

v(s) = AS~~~
’2 + v

1
(s) (10)

* where v
1’(s) is continuous at s = 0. Hence for 0 < a < 1/2,

- 
v(s) has a vertical tangent at the crack tip, s = 0, and from (9)

it follows that g(s) — O(ls !_h/2) as s approaches zero from the left.

It is apparent that (10) is also valid for 1/2 < a < 1.

Consequently , for a = 1/2 the free crack faces meet at a sharp corner

and there results a square root singularity in the normal stress ahead

~

—

~
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of the crack tip. However, for ci > 1/2, the crack surf aces form a

cusp (i.e. close smoothly) with the normal stress still having a

square root singularity. (See Fig. 1.) This is in marked contrast

to the behavior of elastic materials.

_ _ _ _  ~1 
-—-- - - -- - - -_--- -- -_----.---  - - - - - - ~~~-~~~—-—- __-—-----
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SECTION 2. AN EXAMPLE.

To illustrate the technique of the previous section we choose a

wedge shape, f (s),  for which the Cauchy integral in (7) is easily

computed. Specifically, for 0 < a < 1/2 we take

f(s) — h[l — (s/i
1)~~~

], S > £~ . The fact that the wedge profile

depends on a does not impose a serious limitation on the usefulness

of the example, since the shape of f(s) is qualitatively the same for

all values of a.

With this choice of f(s), the function F(t) in (5) becomes

F(r) = c - F(
a) 

£1 
ci
h~~

l[l -

The Cauchy integral in (7) may now be evaluated , and after some

manipulation yields

1/2 a—l/2
it

I F(t)d -t(i— s)

= C B(a+l/2 , l/2 )L 2
ci (l_ s/ i 2 ) 1

~
2

2 F1(l/2~~~, -1/2; 1/2; s/ i 2 )

(11)

- Ah r ( a+l/2 ) r ( - l/2 )  ( l.s1i2 ) ci_ lI2
2 F1(1124.a , 1/2; 3/2; s/ L 2)

— Ahr( a) ,

where the parameter A is defined by
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A = (i1/t2)~~~ . (12)

After  subst i tut ion of (11) into ( 7 ) ,  the integral in (8) may be

computed from which it follows that

• v (s) = (K+Ah) B(a, l/ 2) (s/i
2)~~

hI2
2?1(

a_l/2, 1/2; a+l/2; s/t2)

- 

- 
r(~+l) (s/i2) ( l  - s/i2)~~

2 (13)

— Xh2(s/i2)~~~~
’2
2F1

(l/2 , 1/2; 3/2; s/ i2).

For convenience, we define a new variable z by z — s/i2 and

consider v(s) as function of z, denoted ~(z). To determine C,

K and A we impose continuity for ~ (z) near z = 0, 1 and for

near z = 1. It is readily seen that near z = 0 ~ (z) has

the following form

~(z) = C1z
” 1/2 + c2z

ci
~~

’2 + O(z~~3~2),

where

aCii £
C1 

— B(ct, 1/2)  (K+ A h) — 

r(a+l) 
— 2Ah (14)

and

C2 B(a , 1/2) 
~(÷i/2) 

(K+Ah) + 2r(~+i) 
- 4!!. (15)
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A similar analysis near z — 1 yields

~ (z) = D
1 + D2(1_z)

U2 + 0((1_z)3/2 ) (16)

with

D1 — K  (17)

and

D2 
= (K+Ah)B(l/2 , a)(l—2a) — r(a+1) L2~ + 2Ah. (18)

Continuity of -G(z) at z = 0 and z — 1 require that C
1 

— 0 and

= h (l—A), and continuity of ~‘(z) at z = 1 follows from

= 0. Hence, we obtain the relations

Ci 
— r(a+1)r(l/2)h(1-a) 

(19)I’(a) 
— 

r(a+1/2)

A = 
r(3/2)r(a+j.) 

(20)r(a+l/2)

The constants K and A are determined explicitly, whereas C and

£2 occur coupled In relation (19). The addition of the Barenblatt

assumption, discussed in the next section, will provide the required

ext ra rela t ion for the determination of C and

It should be noted that the coefficient C2 becomes

_
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2r(l/2)r(a+].)(1—u)h 
— 

4 A (1—cs)C2 r(3/2+a) 3 Ii 
(l/2+a) (21)

vhich is clearly non—zero. This verifies line (10) in section 1 and

hence the subsequent discussion on the nature of the singular normal

stress .

_ _ _ _  _ _  — - - -~~~- 
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SECTION 3. THE BARENBLATT HYPOTHESIS.

The Barenblatt hypothesis is that, for an equilibrium crack,

forces of cohesion act on the separated crack surfaces within a small

neighborhood of the crack tip to effec t a smoothly closed crack and a

cancellation of the singular normal stresses ahead of the crack tip.

It is further assumed that the stress intensity factor corresponding

to these cohesive forces is an intrinsic property of the material

and , in particular, is independent of the length of the interval on

which the forces act. The Barenblatt hypothesis is encorporated into

the model discussed in section 2 by amending the stress free normal

boundary condition as follows :

a;(s, 0) = p (s) 0 < s < 22,

where p(s) is some distribution of cohesive normal tractions which

vanishes for s > d and d is a small positive number. The tractions

p(s) are assumed to have a known stress intensity factor , L, given

by

L — 1 1
d 
PS! ) ds.

a 
w J 0 ~r

It is clear that the dual integral equat ions (1) and (2) are still

valid . However , the generalized Abel equat ion (5) becomes
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r (a )  

[
~ 2 ~~~~~~~ + cos (a iT )J  ~~~~~~ t] 

- F
i
(s) (22)

O < s < L
2

where

F
1(s) = F(s) — Q(s), (23)

pd
• Q(s) = — 

J q(t)dt 0 < s <  d (24)
S

and

q(s) — 2 (l_v 2) p ( s ) / ( l J ci
Er(l_a)). (25)

Equation (22) may be reduced , as before, to the ordinary Abel

equation

1~ ‘‘t’dtJ V 
~ / 

a 
= H1

(s) — H2(s), (26)
0 (s—t)

where H
1(s) is given by (7) and

1/2 a—l/2
H
2
(s) = _s

~~
/2(i2 S)l/2_a r(i—a) J

t 2 
Q ( r ) d r .  (27)

* 
Solving (26) we obtain , f inally ,

i [~*s H1(t)dt ~s H2(t)dt 
a

v( s) — B(a , 1—ti) Li~ (s_t)~~ti 
— 

~‘O (s—t)
1
~~ 

(28) 

~~~~~~—-—-— - _.~~~~~ —- -  —~--- ---— —-—--— - -- —--— ------ ----------— --- ----~~ --------- _ _ _ _ _ _ _ _ _ _ _ _ _
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A few comments are now in order. As is well—known (Mrenblatt [2]),

it is the stress intensity factor, L, rather than the actual

distribution of tractions, p (s), that enters into an analysis of

stresses at the crack tip and a determination of the free crack length,

Moreover , we shall show that , if d/L 2 is small , then the

displacement field is essentially independent of p(s). Consequently,

for illustrative purposes, we shall assume that p(s) is equal to a

constant, p, on 0 < s < d.

Returning to the computation of v(s), we denote the constant

function q(s) in (25) by q and observe that Q(s) in (24) becomes

Q(s) q(a—d) 0 < s < d.

Substitution of Q(s) into (27) yields

1/2 ci—l/2

R2(g) — — s~~
/’2 (t

2
_s)1I’2tiq 

r(i—a) 
ç

d it 
~~2~~

)) (t—d) 
di. (29)

~~e to the presence of (22
_1)t i h 1’2 in the integrand , the Cauchy

integral in (29) cannot be evaluated simply. Since we
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ultimately will let d/L
2 tend to zero, we may substitute

for (t
2
_t)~~

1J2 in (29).

Given this simplification , H2(s) becomes

H2(s) 
= (s/d)~~

/2 (L - s/i2)
1/2_ti

q r(i-a~

d B(2 , 1/2) 2F1(-3/2 , 1; 1/2; s/d) 0 < 5 < d

—d(s/d)4B(2 , 3/2)
2F1

(l, 3/2; 7/2; d/s) d < 5 .

To analyse v(s) ~n (28) we introduce some notation. Let v1(s)

denote the displacement correspond ing to a free crack surface, I.e.

without the Barenblatt hypothesis. Then

S H (t)dt

B(a , l-a) 10 ~~~~ l—a ~~ < S <

and is given explicitly by (13). Let v
2(s) be given by

__________ 

1s H 2 (t)dt
v2 (s) = 

B(ct, 1—a) J 0 (s_ t )~~
ti

As in the preceed ing section , it is convenient here to define new

variables z — $122 and c = d/t 2 and let 
~~ 

and denote the

corresponding functions of z and c. Moreover, we introduce the

parameter
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L1 — 
2gd~

’2 
L 2(l_v2)/ (v tiEr(l_a))

where L is the stress intensity factor corresponding to the cohesive

tractions p (s) on (0, d).

It is now a simple matter, albeit tedious, to substitute the

expression for H
2(s) into (28) and compute the necessary integrals,

• keeping in mind that }1
2(s) is defined differently on (0, d) and

(d, £2). However, our ultimate goal is the determination of £
1 and

£2 for which we need only consider the asymptotic form of *(z) for

z near 0 and 1. Moreover, we ar e assuming c to be small, and

hence shall combine all terms which vanish as c -‘ 0 into a single

residual term.

We first consider the asymptotics of ~(z) for z near zero, in

particular we take z < c. It may be shown that

= (2L
1/3r(a))[cB(a, l /2)L~~~

l2
z
ti_h/’2

2F1(
a_l/2, 1/2; a+l/2; z)

- 3B(a , 3/2)2 h/2zti+h/22F1(a_l/2 , 3/2; 3/2+cz; z)

+ chJ2i2
1
~
’2
~~ JZ (t/E)3i’2~i_t)L/2_ti

2
~
1
(1/2 , 1; 5/2; t/c)dt ]

0 (z— t) ~
- 0 < z < c

— + ~~~
a+l/2 + 0(z~~

3’
~
’2) (30) 

-~~~~--------- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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with

C3 
= (2L1/ 3)c~~~~

’2r(l/2)/r(ct+l/2) (31)

and

C
4 

= l/2C
3(a-l/2)/(ci+1/2) 

- L1
/2r(1/2)/r(a+3/2). (32)

Since ~ (z) = ~1(z) — ~2(z) we obtain for 0 < z < c

~ (z) (C1
_C
3

)z ci
~~~

2 + (C
2
_C
4

)z ti
~~

’2 +

For finite stress we require

C1 — C
3
= 0

(33)
C2 

— C4 
= 0.

A similar analysis must be performed for z near 1. Observe

first that, if c < z < 1,

= v3
(z) + ~4(z)

with

- 
£~ ~c H2(t)dtv3

(z)  
B(a, 1—a) ‘~ (z_t)~~

ti

- - -____________

- - .- - -
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and

z ã
2(t)dt

= B(a , 1-a) J (z_ t)~~
ti

Clearly -~3(z) is smooth for z near 1 and is negligible for

c << 1. For ~4(z) we obtain

~4 (z) D3 + D4 ( 1_z) h/’2 
+ 0((l—~)~

”2)

with

D3 = = 0(c ) .  (34)

To verify (34), we need only observe that

= (L~~~qB(2 , 3/2)c/irr(a))

1Z 
(t/t)3/2(~~t)

l/2_ti 

2F1
(l, 3/2; 7/2; c/t)dt.

e (z—t)

• Since (c/ t ) 3’2
2 F1(l , 3/2; 7 /2 ;  c/ t )  is uniformly bounded for

< t < z < 1, the estimate (34) is now evident.

For continuity of ‘~(z) and ~ ‘(z) at z 1 we require

— — f(L2) = h(1—X)

and (35)

D
2 

— D
4 

= 0.

j
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Combining (31) , (32) , (33), (34) and (35), we arrive , finally, at the

relations

K = h (1—A ) + 0(c),

A = r (3/2)r(l-f-a)/r(l/2+a) + 0(e),

C.u-~
= r(l+a)r(l/2)h(l—a)/r(l/2+a) + 0(c)

and

ct+l/2
£2 

= — (2/3)h(l—a)rO+o)/L
1. (36)

We remark again that line (36) provides a means of experimentally

determining the stress intensity for an equilibrium crack. Indeed,

from (36) it follows that the stress intensity factor, L, associated

with the cohesive tractions (which , under the Barenblatt assumption,

is equal in magnitude but opposite in sign to the usual stress intensity

factor for a free cr~ick surf4ce) is related to the wedge speed , U,

and crack length , £2, by

L = _ (l/3)hr(l÷a)r(2 a)Uti
EL~~~~

/2/(l_v2).

Hence, for given speed U, the stress intensity factor L is easily •

computed once the length of the crack, £2 , has been measured.

I

—--

~ 

-- ------ ~~--~~~~~~ ~~~ - 
--

~~
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~~~~~ —~~~~~

-
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A few comments on the stress and displacement field under the

Barenblatt hypothesis are in order. Ontside of a neighborhood of

order e centered at the crack tip, the stress and displacement fields

are merely a perturbation of order c from the stress and displacement

fields corresponding to a free crack surface (i.e. without a

Barenblatt zone). It is only on an interval of order £ that the

displacement profile suddenly becomes cusp—like and the stress

distribution falls off rapidly to zero. In the limit £ = 0, (though

keeping L constant) the stress and displacement fields are identical

with those of a free crack, every where. However, unlike the problem

posed with a free crack surface, we are still able to determine the

crack length, £2) explicitly.

~ 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~—
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1 ’
Figure 1. Displacement fields for 0 < a < 1/2 ( ),

a 1/2(—•— ---•—) and 1/2 < a < 1 ( ).
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